21. The homotopy lifting property

Definition 21.1. Let $p: \tilde{X} \longrightarrow X$ be a covering space. If $f: Y \longrightarrow X$ is a continuous function then a **lift of** f **along** p is a continuous function $\tilde{f}: X \longrightarrow \tilde{Y}$ such that the following diagram commutes

$$Y \xrightarrow{\tilde{f}} X$$

Note that the diagram commutes if and only if

$$f = p \circ \tilde{f}$$
.

Lemma 21.2 (Uniqueness of lifts). Let $p: \tilde{X} \longrightarrow X$ be a covering space and let $f: Y \longrightarrow X$ be a continuous function.

If \tilde{f}_1 and \tilde{f}_2 are two lifts of f then the set

$$E = \{ y \in Y \mid \tilde{f}_1(y) = \tilde{f}_2(y) \}$$

is both open and closed in Y.

In particular, if Y is connected then either $E = \emptyset$ or E = Y.

Proof. We first show that E is open. Suppose that $y \in E$. Pick an open neighbourhood $U \subset X$ of f(x) that is evenly covered by p.

Then

$$p^{-1}(U) = \coprod_{\alpha \in \Lambda} V_{\alpha}.$$

As $\tilde{f}_1(y) = \tilde{f}_2(y)$ it follows that $\tilde{f}_1(y)$ and $\tilde{f}_2(y)$ both belong to the same V_{β} . Let

$$N = \tilde{f}_1^{-1}(V_\beta) \cap \tilde{f}_2^{-1}(V_\beta).$$

Then N is an open subset of Y. We have

$$p|_{V_{\beta}} \circ \tilde{f}_1|_N = f|_N = p|_{V_{\beta}} \circ \tilde{f}_2|_N.$$

As $p|_{V_{\beta}}$ is a homeomorphism, it is certainly a bijection and it follows that

$$\tilde{f}_1|_N = \tilde{f}_2|_N.$$

Thus $y \in N \subset E$ and so E is open.

Now we show that E is closed. There are two ways to proceed.

For the first we will show the complement is open. Pick $y \notin E$. We proceed as above and we use similar notation. As $\tilde{f}_1(y) \neq \tilde{f}_2(y)$ we conclude that $\tilde{f}_1(y)$ and $\tilde{f}_2(y)$ belong to $V_{\beta} \neq V_{\gamma}$. But then

$$y \in N = \tilde{f}_1^{-1}(V_\beta) \cap \tilde{f}_2^{-1}(V_\gamma)$$

is an open subset of the complement of E. Thus the complement is open and E is closed.

For the second way, assume that X is Hausdorff. It follows easily that \tilde{X} is Hausdorff. But then the locus where two functions to a Hausdorff space are equal is always closed.

Theorem 21.3 (Homotopy lifting property). Let $p: \tilde{X} \longrightarrow X$ be a covering space and let $F: Y \times I \longrightarrow X$ be a homotopy from f_0 to f_1 . Suppose that there is a lift \tilde{f}_0 of f_0 . Then we may lift F to a homotopy making the following diagram commute

$$Y \xrightarrow{\tilde{f}_0} \tilde{X}$$

$$\downarrow \qquad \tilde{\tilde{f}} \qquad p \downarrow$$

$$Y \times I \xrightarrow{\tilde{f}} X.$$

where $i: Y \longrightarrow Y \times I$ is the continuous function i(y) = (y, 0).

Proof. Pick an open cover of X

$$\mathcal{U} = \{ U_{\alpha} \mid \alpha \in \Lambda \}$$

by open sets U_{α} that are evenly covered. We may write

$$p^{-1}(U_{\alpha}) = \coprod_{\beta \in \Lambda_{\alpha}} V_{\beta}$$

where each V_{β} is homeomorphic to U_{α} .

We get an open cover of $Y \times I$

$$\mathcal{V} = \{ F^{-1}(U_{\alpha}) \mid \alpha \in \Lambda \}.$$

If we fix $y_0 \in Y$ then we get an open cover of $\{y_0\} \times I$. Pick $N = N(y_0)$ so that

$$\frac{1}{N} < \delta$$
,

the Lebesgue number of the cover. Then each path

$$F|_{\{y_0\}\times[i/N,(i+1)/N]}: \{y_0\}\times[i/N,(i+1)/N] \longrightarrow X$$

lands in (at least) one U_{α} . But then the Tube Lemma implies that we may find an open neighbourhood W_{y_0} of y_0 such that

$$W_{y_0} \times [i/N, (i+1)/N]$$

lands entirely in U_{α} , for each i.

We now lift $F|_{W_{y_0}\times[i/N,(i+1)/N]}$ to $\tilde{F}|_{W_{y_0}\times[i/N,(i+1)/N]}$, for each i. We start with i=0. By assumption we land in some U_{α} . We already know how to lift $F|_{W_{y_0}\times\{0\}}$ to $\tilde{F}|_{W_{y_0}\times\{0\}}$. Suppose this lands in V_{β} . Since

$$p|_{V_{\beta}}\colon V_{\beta} \longrightarrow U_{\alpha}$$

is a homeomorphism, we define

$$\tilde{F}|_{W_{y_0} \times [0,1/N]} = (p|_{V_{\beta}})^{-1} \circ F|_{W_{y_0} \times [0,1/N]}.$$

Now we keep repeating the same argument. We lift $F|_{W_{y_0}\times[1/N,2/N]}$ to $\tilde{F}|_{W_{y_0}\times[1/N,2/N]}$, then we lift $F|_{W_{y_0}\times[2/N,3/N]}$ to $\tilde{F}|_{W_{y_0}\times[2/N,3/N]}$, and so on.

Continuing in this way, after N steps, we construct a lift of $F|_{W_{y_0}\times I}$ to $\tilde{F}|_{W_{y_0}\times I}$.

The final thing to check is that we can patch these functions together. Suppose that

$$(y,t) \in (W_{y_0} \times I) \cap (W_{y_1} \times I).$$

In this case

$$y \in W_{y_0} \cap W_{y_1}$$
.

As as our two lifts have to agree at

$$(y,0) \in (W_{y_0 \times I}) \cap (W_{y_1 \times I})$$

and I is connected (21.2) implies they have to agree on

$$\{y\} \times I$$
.

But then they agree at

$$(y,t) \in \{y\} \times I.$$

Even the case when $Y = \{*\}$ is a point is interesting:

Corollary 21.4. Let $p: \tilde{X} \longrightarrow X$ be a covering space and let $\gamma: I \longrightarrow X$ be a path starting at x_0 .

If $\tilde{x}_0 \in \tilde{X}$ is a point such that $p(\tilde{x}_0) = x_0$ then there is a unique path $\tilde{\gamma} \colon I \longrightarrow \tilde{X}$ such that

(1)
$$\tilde{\gamma}(0) = \tilde{x}_0$$
, and

(2)
$$p \circ \tilde{\gamma} = \gamma$$
.

Note the importance of base points. If we don't fix \tilde{x}_0 then it is not true that there is a unique lift.

Corollary 21.5. Let $p: \tilde{X} \longrightarrow X$ be a covering space and let $\gamma_0: I \longrightarrow X$ and $\gamma_1: I \longrightarrow X$ be paths from x_0 to x_1 . Let $\tilde{\gamma}_0: I \longrightarrow \tilde{X}$ and $\tilde{\gamma}_1: I \longrightarrow \tilde{X}$ be paths starting at \tilde{x}_0 lifting γ_0 and γ_1 .

If $\gamma_0 \sim \gamma_1$ as paths then $\tilde{\gamma}_0 \sim \tilde{\gamma}_1$ as paths. In particular the endpoint $\tilde{\gamma}_0(1) = \tilde{\gamma}_1(1)$ does not depend on the lift.

Proof. Pick a homotopy $F: I^2 \longrightarrow X$ from f_0 to f_1 . By (21.3) we may lift this to a homotopy $\tilde{F}: I^2 \longrightarrow \tilde{X}$ from $\tilde{f_0}$.

Now the path

$$\tilde{\gamma} \colon I \longrightarrow \tilde{X}$$
 given by $\tilde{\gamma}(t) = \tilde{F}(t,1)$

is a lift of γ_1 starting at \tilde{x}_0 . Thus $\tilde{\gamma} = \tilde{\gamma}_1$, by (21.2).

The paths

$$I \longrightarrow X$$
 given by $F(0,t) = x_0$

and

$$I \longrightarrow X$$
 given by $F(1,t) = x_1$

are constant. It follows that their lifts via \tilde{F} are constant. Thus

$$\tilde{x}_0 = \tilde{F}(0,t)$$
 and $\tilde{x}_1 = \tilde{F}(i,t)$

are also constant. Thus \tilde{F} is a homotopy from $\tilde{\gamma}_0$ to $\tilde{\gamma}_1$ as paths from \tilde{x}_0 to \tilde{x}_1 .